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J. Phys. A: Math. Gen. 19 (1986) 1279-1289. Printed in Great Britain 

On the factorisation of matrix elements for systems with 
anti-unitary symmetry 

M N Angelova, M I Aroyo and J N Kotzev 
Faculty of Physics, University of Sofia, Sofia 1126, Bulgaria 

Received 3 June 1985 

Abstract. For the case of corepresentations of anti-unitary magnetic groups a new generali- 
sation of the Wigner-Eckart theorem, based on the symmetrised Clebsch-Gordan 
coefficients, or.3D-symbols, is given. It is shown that the reduced matrix elements are real 
for all types of corepresentations. 'the reduced matrix elements of coupled tensor operators 
are expressed in terms of the reduced matrix elements of their components. 

1. Introduction 

The central problem in quanturn mechanical calculations is how to compute a matrix 
element of an operator. Such a calculation is simplified if one invokes the Wigner- 
Eckart theorem, which introduces the concept of a set of operators, transforming 
according to some irreducible representation of the appropriate symmetry group of 
the system. The matrix element of such an irreducible tensor operator (ITO) between 
states belonging to two irreducible representations of the symmetry group is given by 
the corresponding Clebsch-Gordan coefficients ( C G C )  up to quantities, describing the 
physical properties of the operator and known as reduced matrix elements ( R M E )  (see, 
e.g., Biedenharn and Louck 1981). The next step in that line is the evaluation of matrix 
elements of products of ITO which are necessary for quantum mechanical calculations 
in atomic, nuclear, molecular and solid state physics, etc. The relations between RME 

of such tensor operators are studied in detail for the orthogonal and symmetric groups, 
as well as for non-simple reducible finite or compact groups (Judd 1963, Vanagas 1971, 
Butler 1975). When the symmetry group of a system is an anti-unitary (AU)  magnetic 
group, the basis functions and the components of ITO do not transform by the linear 
representations but by its irreducible corepresentations (coreps) (Wigner 1959, Bradley 
and Cracknell 1972). It leads to non-trivial difficulties in the computation of matrix 
elements. The Wigner-Eckart theorem for a case of coreps of finite magnetic groups 
was generalised for the first time by Kotzev (1967, 1972) and Aviran and Zak (1968), 
but their results are rather complicated and not very convenient for application. 

The aim of the present paper is to factorise the matrix elements of the quantum 
mechanical operators for coreps of Shubnikov magnetic groups (grey and black-and- 
white), using the symmetrised coefficients for coreps (nD-symbols). 

In 0 2, we generalise the Wigner-Eckart theorem for coreps on the base of the 
symmetrised CGC for coreps-3D-symbols (in analogy with the Wigner 3j-symbols). 
There are some essential advantages of this version of the theorem which are discussed 
in § 2. 
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In 0 3 we consider coupled ITO for coreps of magnetic groups. We obtain the RME 

of coupled tensor operators (CTO) for coreps in terms of the RME of their components 
for two cases: (i)  CTO and its components act in one and the same space; (ii) the 
components of CTO act independently in different subspaces. The relations are derived 
using symmetrised coefficients for coreps, such as 6 0 -  and 9D-symbols, analogous to 
the Wigner 6J- and 9J-symbols respectively. The peculiarities of the derived relations 
are discussed. 

In the appendix some properties of 1D-symbols (in analogy with the Wigner 
lj-symbols) and 3D-symbols, necessary for the derivation of the main results in 00 2 
and 3, are given. 

2. On the Wigner-Eckart theorem for AU magnetic groups 

The generalisation of the Wigner-Eckart theorem for the case of coreps of magnetic 
groups in terms of the CGC for coreps (we shall refer to it as a 'CGC version') has been 
given by many authors (Kotzev 1967,1972, Aviran and Zak 1968, van den Broek 1979). 
In the general form of the 'CGC version' of the theorem (Kotzev 1972) the matrix 
elements of ITO T" = { T t , q }  in the basis {lai, alai)} of the coreps Dol = DT"l of the AU 

group CA are given by the equation 

(%ala11 q q l  a24a2)  

x [xq 'q,  aza;azlalr",P;all* (1) 
where [Dall and [rail are the dimensions of the corep Dui and the corresponding 
irreducible representation r"l of the unitary subgroup of CA, respectively. The matrix 
elements are expressed in terms o f theccc  [xq'q, a2a;a21alra,plal] ,  re, = 1, . . . , (xa21al) 
where ( x a z I a l )  is the Kronecker multiplicity of Dui in D" x DOZ. Double indices for 
the row labels of basis functions and operators are introduced for the sake of con- 
venience; the primed indices are equal to 1, 2 for the type 'b' and type 'c' coreps, and 
are equal to 1 for type 'a' corep; the unprimed indices run from 1 to [r"]. 

(almlll TXIIaZ)rmlki = [rUlir1 
The definition of RME used in (1) is 

(alm:all  T:,,Iaza;az) 
4'&PI  0 2  

x [w'q, ~ Z ~ ; ~ z l ~ l r " , ~ : ~ l l .  (2) 
An additional relation between the RME (which considerably decreases their num- 

ber) can be obtained taking into account the AU operators of CA: 

where Q f ( a l )  and Q"(a,) take the values 0, 4, *1 depending on the type of the corep 
D"I and the set of indices. 

We should point out that the Wigner-Eckart theorem, given by equations (1) and 
(3), is valid for coreps in the canonical form (Wigner 1959). Moreover there are some 
problems which in principle cannot be solved within the framework of the 'CGC version' 
of the theorem and which limit its application in the general case: ( i )  the explicit form 
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of that version of the theorem is different for the different type of the corep D"1; (ii) 
the RME (2) are not completely independent of the basis functions (as it is in the 
classical case of linear representations). In what follows we shall show that these 
problems can be solved using the symmetrised CGC for coreps-3D-symbols (Kotzev 
et a1 1984a, see also the appendix)-to obtain a new form of the Wigner-Eckart 
theorem (referred as a '3D-symbol version'). 

In order to find the desired new form of the theorem we act with both unitary and 
anti-unitary elements of G A  on the basis functions {[aiai)} and the components of ITO 

{ T : }  and obtain 

(a,a,lT:l~2~z)(*'= g(~lal/T;la2a2) 

= C D ~ : a l ( g ) * ~ : ~ ( g ) D ~ : a 2 ( g ) ( L u , n , l  ~:IaZn2). (4) 
w n2 

Here and everywhere the asterisk in parentheses (*) means that complex conjugation 
is applied if and only if g E GA is an anti-unitary operator. The matrices D"l(g)*, 
g E G A  form a corep, which is equivalent to the 'standard' corep D":(g), g E G A .  The 
transformation to the standard corep is carried out by the unitary matrix K "7 

D U M  g E G A .  ( 5 )  K Q; - 1 D Q ~  ( g)  * K a:(*) = 

In analogy with the Wigner lj-symbols, we call the matrix elements of K"; the 
1D-symbols (see the appendix for more details). 

After the summation over the unitary and anti-unitary operators of G A  and taking 
into account ( 5 )  and the definition of 3D-symbols (see equation (A5) in the appendix) 
we get the new form of the Wigner-Eckart theorem for coreps 

(a1II~"IIa2), =(a1IITXIIa2)~, p = 1, .  . . , (a7xa21ao). (7) 
Here, in addition to the replacement of CGC by the 3D-symbols, we have also 

introduced a new definition of RME: 

Now, the RME do not depend on the indices of the corep basis functions. The 
dependence on the Wigner type of D"I is included in the multiplicity index p = p (  ralro),  
r a I = l  , . . . ,  ( x a 2 J a I ) ,  r o = l  ,..., (alaTlao) arid ( a l aT laO)= l ,4 ,2  for D"I of type 'a', 
'b', and 'c' respectively. 

It is important to stress that as a result of the considcration of both unitary and 
anti-unitary operators of G A  and the new definition of RME (8), we obtain real RME 

(7 )  for all types of coreps D"I (not only for type 'a' corep as it is in equation (3)). 
T h i s  result is not surprising as the 3D-symbols reduce the triple product D": x D" x D"2 
to the identity corep D"0, which is always from type 'a' (here we choose D"o(g) = +1 
for all unitary and anti-unitary g E G A ) .  

Let us compare the two definitions of RME, (2) and (8), given by the two versions 
of the theorem. Equalising the RHS of (1) and (6) and using the relation between 
3D-symbols and CGC (A8) as well as (A12) and (A13) we obtain 
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The unitary matrix Zu;(ro)  depends on the type of the corep D"I and its form is 
given in the appendix (A14). The orthogonal matrix of the so-called isoscalar factors 
( IF)  p';xuz gives the correspondence between the compound multiplicity index p and 
the pair of indices ( ru,ro). As is shown in the appendix it can be chosen in a diagonal 
form ( A l l )  and in this case the sum over p in (9) vanishes. The relation (9) shows 
that the RME of the 'ccc-version' of the theorem (2) are linear combinations of the 
RME of the '3D-symbol version' (8). For example, for the type 'c' corep Dui we have 

(a1111 T"Il~2)r,ll 
2 

= ( ~ , 2 1 1 ~ x I I ~ 2 ) ~ ~ l ~ = z , [ ~ u ~ I " 2  C ~(afxa,; rulro)(a111~"IIa2) , lro.  (10) 
ro= 1 

Let us summarise the results of this section: the Wigner-Eckart theorem for coreps, 
expressed by (6) and (7), gives the factorisation of the matrix elements of the tensor 
operators in terms of 30-symbols. It has the following advantages in comparison with 
the 'ccc-version' of the theorem (1) and (3): (i) the RME are real in all cases; (ii) the 
matrix elements are completely factorised; (iii) the form of the theorem is considerably 
simplified and it does not de.pend on the type of corep. 

The above-mentioned proof of the theorem is valid for all kinds of magnetic groups 
(grey and black-and-white). Similar results, but only for the special case of grey groups, 
are presented by Newmarch and Golding (1981). 

3. Factorisation of matrix elements of coupled tensor operators for AU 

magnetic groups 

Using the advantages of the '3D-symbol version' of the Wigner-Eckart theorem, we 
can continue to develop the method of irreducible tensor sets for coreps. In this section 
we will consider the factorisation of matrix elements of coupled tensor operators (CTO) 

and the relations between the RME of CTO and its components. Such relations are well 
known for linear representations (Judd 1963, Butler 1975). However, essential 
peculiarities appear for the corep case and they result mainly from the generalised 
Schur lemma for irreducible and reducible coreps (Kotzev and Aroyo 1983). It is 
convenient to bring these relations into a form which mostly corresponds to the 
respective relations of the linear representations, taking into account the special features 
of the coreps. It can be achieved by imposing some reasonable assumptions, which 
considerably simplify the form of the relations between the RME and facilitate the 
application of the results. 

In order to compare easily our results for the case of coreps with those of the 
representations, we will follow the scheme proposed by Butler (1975). 

In analogy with the representation case, we will use the following definition of a CTO 

r, = 1 , .  . . , (xlx21x) (11) T ; ' x  E { P"I QX~}Xrx = 
q C P::Q;$xiqi, x d x r x q l ,  

4142 

where Pi; and Q;; are components of ITO, transforming by the coreps D"I and Dx2 
of the AU group CA respectively and [xlql ,  x2q21xr,q] are the corresponding CGC for 
the coreps. 

(1) First of all we shall consider the general case when the CTO {P"~QXz}Xr- as well 
as its components P"I and 0%' act in one and the same space with a basis { [aiai )} .  The 
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matrix elements of { P x l Q x z } % r x  are expressed by the matrix elements of P"I and Q X 2  

as follows: 

where on the RHS of (12) the relation between the CGC for coreps and the corresponding 
3D-symbols is used (A15) and the multiplicity index px runs from 1 to ( x I x 2 x * ~ a 0 ) .  
After the application of the new form of the Wigner-Eckart theorem on both sides of 
(12) and using the orthogonality relations of 1D- and 3D-symbols (Al)  and (A7), we 
get the following relation between the RME: 

(a1 I1 {PxIQXz)Xrx II a 2 ) p ,  

= [Dx11/2 c ( ~ 1 1 1 P X ' I I ~ 3 ) p l ( ~ 3 1 1 Q X ~ I I ~ 2 ) ~  
a3P1P2 

pm = 1, .  . . , (a;Xa21aO). 

Equation (13) shows that, as in the representation case, the RME of CTO for coreps 
are expressed in the form of linear combinations of the RME of its irreducible com- 
ponents. Before starting the detailed discussion of the coefficients in (13) we should 
point out a very important peculiarity of the result: the RME in (13), defined by (8), 
are real for the corep case. 

In the derivation of the relation (13) sums of products of four 3D-symbols and 
the corresponding 1 D-symbols appear, and these sums can be transformed into the form 

x(;; 4 x a2)  a2 Po (1; ;; "') 47 pi  ( x 2  q 2  ": 4 "') 41 Px' 
(14) 

The quantity (14) has symmetry properties under permutations of rows and columns, 
and under complex conjugations, similar to the corresponding ones of the 6j-symbols, 
however, the specific character of the coreps introduces essential peculiarities 
(Newmarch and Golding 1983). We will call it a 6D-symbol. 

l y e  last factor in equation (13) has the following meaning: 

A P i P i P x ; P z P I , r x r O  = ( ,a3x;a;A a 3 x * a * - 1  z z x va~x;a ;Aa~x;a ; - l  x p X ~ X 2 X * - 1 )  
pipip. ,pzpi r x w  

P I ,  PI = 1, .  . . , (a,xTaTlao), P 2 ,  P i =  1, .  . , (a,da:lQo), 
(15) 

P x  = 1,.  * a ,  ( " 1 " 2 " * b O ) ,  

r x  = 1, * * * , (","2l"), r,= 1, .  . . , (xx*Ia , ) ,  

It is a product of IF, which appear as a consequence of the application of the Schur 
lemma for reducible coreps in getting equations (13). 
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We have already mentioned (see 0 2) that the IF realise the correspondence between 
the multiplicity indices and their meaning is discussed in detail in the appendix. As 
it is shown there, using sensible assumptions the matrices of the I F  can be reduced 
into a diagonal form, and we get from (15) 

A p ; p i p X ; p 2 p l  ,rxro = ~(a,": a P Z )  T (  x Ta T; P I  )P ( X I  x z x  *; r x r o )  S p ; p 2 8 p i p l  Spx,r.ro.  ( 16) 

We should point out that the above-discussed I F  for coreps are real, while in the 
case of linear representations they can be complex numbers. Taking into account (16), 
the relation between the RME (13) considerably simplifies and reduces to a form similar 
to equation (19.5) in Butler (1975). 

An important special case for practical applications is when the CTO is a scalar. 
The corresponding relation between the RME can be obtained either directly from (13), 
considering the fact that a 6D-symbol with an identity corep is reduced to a product 
of dimension factors and a set of IF ,  or by direct calculations from (12): 

( a1 II( P x 1 Q x ~ } ~ o r o I I a 2 ) p ,  = Su2ul [  DUI x D X y  

A(p,,p,,ro) = d a , x T a T ;  P I ) T ( ~ , ~ T ~ o ;  P ~ ) P ( ~ I ~ ? ~ o ;  ro). 

Here we have taken into account the diagonal choice of the matrices of IF.  

(2) Let us consider, now, the modification of equation (13) when the basis 
{I(piyi)airu,ai)} of the CTO space is a direct product of two subspace bases {IPibi)} and 
{ I  yici)} ,  and each of ITO P"I or Q"2 acts in only one of the component spaces. 

It is easy to show that equatiog (13) now gets the form 

( ( P I  Yd"'  'a1 I I { P " ' Q X Z } X r x  II(P2Y2)~2L2)P, 

= [Dui x D" x Du211/2 c ( P I  I1 pxllIPz)pg(Y1 I1 Q"'Il Y J P ,  
PBP, 

P;, P'y PP 

pa = 1, .  . . , (aTm2Ia0). 

The symbol in curly brackets in (18) is given by the following relation: 

P x  

P b  P:  Pa 
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This quantity has similar symmetry properties to the 9j-symbol (Butler 1975), and 
although there are certain differences between them, caused by the corep peculiarities, 
we will call it the 9D-symbol. 

The last factor in equation (18) is a product of IF and its explicit form is 

B P ,  PrP, P ’ P  v ; ~ , l ~ o , . r , r o . ~ ~ 2 ~ 0 2 . ~ ~ ~ v  ’ 

= [ (pa iYia :Aa;Y:a i  x P X ~ X z X ’  x p f i z y z “ ;  x AaiX;a; 

(20) 
* I  

x ~ y ~ x 2 y 2 ~ ~ 1 1 ~ , I ~ x ~ ~ z ~ ~ ~ ~ ~ , l ~ ~ l ~ ~ ~ ~ ~ ~ z ~ ~ z ~ ~ ~ v ~  
ro, = 1,.  . . , ( a l a f l a o ) ;  ro,= 1, .  . . , (a2aYTIaO); ro= 1, .  . . , ( x x * l a o ) .  

It can be simplified considerably using the diagonal choice of the corresponding 
I F  matrices p and A (see the appendix). 

Equation (18) which we get for the case of coreps coincides with the analogous 
Butler relation for the linear representations, but the character features of the coreps 
lead to: real RME (8), real coefficients B (20) and some differences in the properties 
of the 9D-symbols (19). 

We note that for the case of grey groups GA=GHOO Newmarch and Golding 
(1983) obtained a relation similar to equation (18),  but they used lower-symmetrised 
‘quasi-9j-symbols’, constructed by products of three CGC and three symmetrised CGC 

for coreps. 
The following two special cases of equation (18) are of practical interest: (i)  one 

of the operators P“I or Q”2 is the unit one, (ii) the CTO is a scalar operator. 
Due to the fact that our 9D-symbols (19) with one identity corep are reduced to 

6D-symbols and a set of IF, the corresponding relations between the RME for both 
cases can be obtained directly from (18). 

For the first case, if Dx2= Duo, we obtain 

( ( P I  Y I b 1  ‘a1 I1 P”, I1 ( P 2 Y * ) a 2 ‘ u 2 ) p ,  

= fjyIyz[Dal x D U T 2  c ( P 1 1 1 p ” I I l P 2 ) p g  
PP 

For the second case we obtain 

In both relations we have used diagonal IF matrices. 
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4. Conclusion 

In this paper, as a next step in the generalisation of the method of irreducible tensorial 
sets for the case of corepresentations of anti-unitary magnetic groups, we get the new 
form of Wigner-Eckart theorem and we factorise the reduced matrix elements of 
coupled tensor operators. We reach it using highly symmetrical coefficients for 
corepresentations (3 D-, 6 0 -  and 9D-symbols). The complete factorisation of matrix 
elements is achieved using real reduced matrix elements for all Wigner types of 
corepresentations and real isoscalar factors. 

We show that it is possible to reduce all obtained formulae to a form closely related 
to the classical ones for the case of linear representations, although there are 
peculiarities in the corepresentation theory. 

Finally, we want to note that our results are valid for all types of magnetic 
anti-unitary groups (black-and-white and grey). They can be applied in the treatment 
of various quantum mechanical problems in magnetic and non-magnetic systems (e.g. 
crystal field theory, spin-orbit interactions, exchange interactions, etc). 

In our next paper we will discuss the effect of the group-subgroup relations on the 
reduced matrix elements and some examples for the application of obtained results 
will be considered. 

Appendix. On ID-symbols and 3D-symbols 

(1) In 0 2 we define the unitary matrix K"'= llK:~*ll, transforming the corep 
D"(g)* to the equivalent corep D"*(g) ,  belonging to the standard set. By 'standard 
set' of coreps of G A  we mean a set of matrices of all coreps D" of the group, which 
are chosen in advance and fixed. In analogy with the linear representation case the 
matrix K"' is called the metric (Wigner) tensor for coreps and its matrix elements-the 
1Dsymbols: they play the role of lj-symbols for coreps (Derome and Sharp 1965, 
Butler 1975, Newmarch and Golding 1981). 

It is worth mentioning that the corep Wigner tensor is determined up to a unitary 
matrix Mu', commuting with all matrices of the corep D"', while in the linear case 
the arbitrariness of this type is reduced to a phase factor only (Newmarch and Golding 
1981, Kotzev and Aroyo 1983). 

The orthogonality relations of 1D-symbols follow directly from the unitarity of 
K"' matrices, i.e. 

C K:;*(K:,:*)* = a,,., a, a ' =  1 , .  . . , [ D " ]  
a* 

and similar relations hold for the columns. 

(as a corollary of the Schur lemma for coreps) through the equation 
The Wigner tensor K " ,  transforming D"*(g)* to D"(g) ,  g e G ,  is related to K"' 

(A2) 
where the tilde means transposition. The matrix M u  commuting with D"(g) ,  g E G A  

is related to M u * :  

K" = E"'MQ 

( M " ) * K ~ * .  ('43) 
MU'= KQ*- l  

In the case of linear representations M u  = &E", and the phase factor (Pn is known 
as lj-phase, satisfying &* = (&)*. 
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The above-defined 1 D-symbols play an important role in the generalisation of the 
Derome-Sharp lemma for coreps and in the relations between the CGC, 6D-symbols 
and 9 D-symbols by the corresponding 3 D-symbols. 

(2) Let us discuss some properties of the 3D-symbols, the symmetrised CGC for 
coreps (Kotzev et a1 1984a), which will be necessary in the derivation of the results 
of 90 2 and 3. 

(i) We define the 3D-symbols as matrix elements of the rectangular matrix 

It is constructed by the first ( c ~ 1 0 2 ~ ~ 3 1 ~ i o )  columns of the matrix Ua1"2"3 of the 
generalised CGC for coreps, which reduce the triple Kronecker product of coreps 
D"1 x Da2hx D"3 to the identity one Duo E Dui x Da2 x D"3. We can write 
Va~a2a~fDU~(g)  x Du2(g) x Da3(g) vaIa2a3(*) = e:;"2"3 x D"o(g), gEGA (A51 

where e:;"2"3 is an identity matrix, dim ez;a2u3 = ( c ~ I c ~ z ( ~ 3 l ~ ~ o ) .  The specific arbitrariness 
of the CGC for coreps is used for the symmetrisation of the corresponding (c.11~~2~13lao) 
columns of Uu1a2a3 so that the above-defined 3 D-symbols satisfy symmetry relations 
similar to those of the 3j-symbols. 

Viewing the 3 D-symbols as vector coupling coefficients, they can be defined as 
coefficients in a linear combination of orthogonal basis functions { 1 aiai)} (transforming 
by the corep Dui), which forms a GA invariant 

From the unitarity of the matrix UUla2"3 and the definition (A5) it follows that the 
orthogonality relations for 3D-symbols hold only for the columns of Vala2a3, i.e. 

(ii) Using the Schur lemma for reducible coreps, we obtain a relation between the 
3 D-symbols and the corresponding CGC, which 'step by step' reduce D"1 x Du2 x D"3 

to Duo 

Here the sums over the multiplicity indices ruj and ro are up to (alazlaT) and 
( aTa31ao) respectively. We should re.mind ourselves that the multiplicity of the identity 
corep Duo in D": x D"3 is equal to 1, 4, and 2 for coreps of the Wigner type 'a', 'b' 
and 'c' respectively, while for linear representations it is always equal to 1. In order 
to clear the meaning of the orthogonal matrix p'1u2u3, dim pU1"2"3  = (ala2a31ao) = 
( a l a 2 ~ a ~ ) ( a ~ a 3 1 a 0 )  we shall construct two equivalent sets of invariants, using the 
3D-symbols on the LHS and the CGC on the RHS of equation (A8): 

I ~ ~ I ~ Z ~ ~ ~ ~ u ~ ~ ~ T ~ 3 ~ ~ 0 ~ 0 ~ 0 ~  = I(aIaz, c ~ ~ ) a ~ r ~ 3 r ~ a ~ ) ,  

'a3 = 1, * * , (aIaZIaT), ro= 1,. . . , (a:a31ao) (A91 

I (a1 a2.3) aO&, P = 1, 3 (aiaza31ao) = (aiazIaT)(aTa31ao). 
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It is obvious that the matrix elements of p " 1 " 2 ~ 3  are the coefficients of the linear 

(A10) 

combination, expressing one of the invariant sets in terms of the other: 

I ( a I a31 aOpaO) = C I ( 1 a 2r a31 a0 r a 3 rOaO)pr, " 1 " 2 " 3 .  7 r0.p 
3 rn 

These coefficients do not depend on the partners of the basis and they are called 
isoscalar factors (IF). For the corep case IF are real, while for linear representations 
they can be complex in the general case. The CGC in (A8) are chosen in such a way, 
so that every invariant from one set is mapped on only one invariant from the other 
set and vice versa, i.e. the matrix p " 1 " 2 " 3  is of a diagonal form. 

CL::;&:; = p(aIaZa3; r a r r O )  s r , j r n . p ,  j ~ ( ( ~ l ( ~ z ( ~ 3 ;  r a ~ r o ) = * l .  ( A l l )  

The following equation, which is fulfilled for a fixed value of the multiplicity index 
ro= 1, .  . . , (aTa31ao), gives the relation between the second CGC in (A8) and the 
1D-symbols (Aroyo and Kotzev 1984): 

where the unitary matrix N":( ro) belongs to the commuting algebra on the corep D";. 
From the Schur lemma for reducible coreps it follows that 

N " : ( r o ) = Z a ; ( r o ) ~  E":. (A13) 

Here E"; is the identity matrix, whose dimension equals the dimension of the 
irreducible representation r"; of the unitary subgroup of GA and the unitary matrix 
Za;(ro)  depends on the Wigner type of the corep D": (van den Broek 1979, Kotzev 
and Aroyo 1983): 

type a :  ro= 1 typeb: r o = l ,  . . . ,  4 type c :  ro= 1,2 
ZI, z2 E @. 

0 zT 
z q  ro) = * 1 

- Z 2  

('414) 

Taking into account (A8) and (A12), we obtain the equation which expresses the 
CGC in terms of 3D-symbols and 1D-symbols, 

ro= I , .  . . , (aTa31aO). (A151 

(iii) Under complex conjugation the 3D-symbols transform in accordance with 
the generalised Derome-Sharp lemma (Kotzev et a1 1984b) 

As in (A8) the orthogonal matrix of IF A";";"; is a corollary of the application of 
the generalised Schur lemma and it expresses the multiplicity arbitrariness. 

The 3D-symbols for magnetic point groups calculated and tabulated in our paper 
(Kotzev et a1 1984a) are chosen in such a way that there is a 'one-to-one' correspondence 
between the invariants of the two sets, i.e. we can set = e n l a 2 " 3 .  an 
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(iv) One of the most important properties of the 3D-symbols concerns their 
behaviour under permutations. Using the generalised Schur lemma for reducible coreps 
we get the following relation between the permuted 3D-symbols: 

1 2 3  where (" b =) is a permutation of the columns of the 3D-symbols. The orthogonal 
matrix T " a P b " c ,  dim T a a " b P c  = ( f f a f f b f f , I f f o ) = ( a l f f 2 a 3 1 ( Y o )  is of the same type as the 
above-discussed p"1~2"3 and A";";":. Its matrix elements contain the information for 
the permutation properties of the 3D-symbols. The ambiguity in their determination 
helps us to obtain 3D-symbols for all 90 magnetic point groups with permutational 
properties, similar to those of 3j-symbols: under an odd permutation of their columns 
they differ almost in a sign (no change under even permutations), 

T ( f f a f f b f f , ;  p )  = * l a  ( A W  T"anbnc - 
p ' p  - T ( a a f f b f f c ;  p )  

(v)  In the derivation of the relations of § 3 we use a special type of 3D-symbol 
transformation to the so-called G,-equivalent basis (Haase and Butler 1984), defined 
in the following way 

This transformation is carried out by the matrices M"', belonging to the commuting 
algebra of D"' coreps, i.e. the explicit form of the matrices D"'(g) ,  gEGA do not 
change under such a transformation. 
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